Smart About Salt Winter Salt Management ProgramSmart About Salt Winter Salt Management ProgramSmart About Salt Winter Salt Management Program
Smart About Salt Winter Salt Management ProgramSmart About Salt Winter Salt Management ProgramSmart About Salt Winter Salt Management ProgramPlace your organization logo herePlace your organization logo here




 
 

News

The opinions expressed in our new items and other published works are those of the author(s) and do not necessarily reflect the opinions of Smart About Salt Council (referred to as SASC) or its Directors, Officers, Volunteer, agents or staff.

All rights reserved. No part of any SASC published work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher.

Information contained in our published works have been obtained by SASC from sources believed to be reliable. However, neither SASC nor its authors guarantees the accuracy or completeness of any information published herein and neither SASC nor its authors shall be responsible for any errors, omissions, or claims for damages, including exemplary damages, arising out of use, inability to use, or with regard to the accuracy or sufficiency of the information contained in SASC publications.

  • 07 Dec 2022 7:04 AM | Smart About Salt (Administrator)

    New campaign underscores impact of road salt on environment - Barrie News (barrietoday.com)

    Eventually, these chemicals enter the natural water system, including municipal drinking water wells and surface water intakes, which can impact our drinking water sources, Conservation Ontario says.

    Conservation Ontario and local source protection authorities and regions have launched a 15-week public information campaign about how to "salt responsibly" this winter.

    Protecting Ontario’s water sources is a critical step in bringing safe municipal drinking water to Ontario residents, they say. 

    “The objective of the campaign is to raise awareness of the road salt issues and to promote salt reduction and better road salt management (winter chemicals) while striking a balance with human safety when travelling,” said Deborah Balika, Conservation Ontario’s source water protection manager, in a newsletter.

    Road salt enters the environment in several ways. Snow gets plowed to the road shoulder and meltwater either infiltrates through soil into the groundwater or runs off into drains and creeks or to stormwater management facilities. 

    Eventually, these chemicals enter the natural water system, including drinking water source protection and vulnerable source protection areas (municipal drinking water wells and surface water intakes), which can impact our drinking water sources.

    As well, climate change is resulting in more extreme weather patterns that may result in an increased use of winter maintenance chemicals. 

    To help create awareness about salty situations across the province, a Salt Responsibly Sticker campaign was developed by Conservation Ontario and a small working group. More than 8,000 salt bins located in vulnerable drinking water areas will have information stickers applied to them.

    “This outreach program is a great way to bring attention to the connection between the activities we do on land can have impact on our lakes, rivers, streams and groundwater” and spread the word about the importance of source water protection,” Balika said.

    New education tools include social media posts and an online mapping application about the impacts of road salt across Ontario. 

    Drinking water protection zones are areas around municipal drinking water sources, where extra protective measures help to reduce risk and keep drinking water safe and clean. Ontario’s municipal drinking water sources include groundwater (underneath our feet in aquifers, drawn through municipal wells); and surface water (such as Great Lakes and rivers). 

    Drinking water source protection is one of several barriers, or ‘lines of defence,’ that help to protect drinking water in the province. Other barriers of protection include monitoring, distribution, and the Three Ts  — treatment, testing and training of water operators. 

    Drinking water source protection is possible in Ontario through the Clean Water Act, 2006. Local source protection committees include representatives of many interests. These committees have developed source protection plans at the local level and the plans have been approved by the Province of Ontario. The source protection plans include policies that reduce risk to our municipal drinking water sources in order to keep drinking water safe and clean for Ontarians. 

    To learn more about drinking water source protection in Ontario, visit the Conservation Ontario source water protection webpage and the Province of Ontario source protection webpage

  • 03 Dec 2022 12:39 PM | Smart About Salt (Administrator)

    City of Greater Sudbury campaigns for residents to use less road salt | CBC News

     lot of people use too much salt to melt ice on their driveways, according to the city of Greater Sudbury.

    To educate people on how to use road salt more responsibly, the Greater Sudbury Public Library has started to hand out 12-ounce, or around 340 ml, cups, which would contain enough salt to cover 10 sidewalk squares or around 500 square feet.

    "The messaging we're trying to give is to use salt responsibly," said Jennifer Babin-Fenske, the climate change co-ordinator with the city of Greater Sudbury.

    "And when you cover an area, you're not covering it like a blanket with salt, you're supposed to use it to help with a little bit of the ice formation."

    Babin-Fenske said it's important to use as little salt as possible in the winter because it can be corrosive and damage the environment in large quantities.

    "You know, it's harmful for the environment," she said.

    "It can corrode things like your concrete walkways and things like that. And a lot of people are really concerned about their pets and their paws."


    Babin-Fenske added that road salt is only effective at melting ice at temperatures below around -12 C. She said people should consider alternatives like sand, for traction.

    Babin-Fenske said the city follows a salt management plan for winter maintenance and only uses salt on 25 per cent of the city's roads.

    Class 4-6 roads, which are rural and residential streets, only get snowplows and sand for traction. Main arterial roads and secondary collector routes are salted before and after a winter storm, if the outside temperature is not too low.

    City contractors are also certified through the Winter Salt Management Program.

    According to the program's website, people should shovel their driveway well before adding any salt or "de-icing material."

    Once the driveway is cleared, they should only sprinkle small amounts of salt, or a salt alternative, on icy areas.

  • 02 Dec 2022 11:57 AM | Smart About Salt (Administrator)

    Awareness campaign underscores impact of road salt on environment - Newmarket News (newmarkettoday.ca)

    Conservation Ontario and local source protection authorities and regions have launched a 15-week public information campaign about how to "salt responsibly" this winter.

    Protecting Ontario’s water sources is a critical step in bringing safe municipal drinking water to Ontario residents, they say. 

    “The objective of the campaign is to raise awareness of the road salt issues and to promote salt reduction and better road salt management (winter chemicals) while striking a balance with human safety when travelling,” said Deborah Balika, Conservation Ontario’s source water protection manager, in a newsletter.

    Road salt enters the environment in several ways. Snow gets plowed to the road shoulder and meltwater either infiltrates through soil into the groundwater or runs off into drains and creeks or to stormwater management facilities. 

    Eventually, these chemicals enter the natural water system, including drinking water source protection and vulnerable source protection areas (municipal drinking water wells and surface water intakes), which can impact our drinking water sources.

    As well, climate change is resulting in more extreme weather patterns that may result in an increased use of winter maintenance chemicals. 

    To help create awareness about salty situations across the province, a Salt Responsibly Sticker campaign was developed by Conservation Ontario and a small working group. More than 8,000 salt bins located in vulnerable drinking water areas will have information stickers applied to them.

    “This outreach program is a great way to bring attention to the connection between the activities we do on land can have impact on our lakes, rivers, streams and groundwater” and spread the word about the importance of source water protection,” Balika said.

    New education tools include social media posts and an online mapping application about the impacts of road salt across Ontario. 

    Drinking water protection zones are areas around municipal drinking water sources, where extra protective measures help to reduce risk and keep drinking water safe and clean. Ontario’s municipal drinking water sources include groundwater (underneath our feet in aquifers, drawn through municipal wells); and surface water (such as Great Lakes and rivers). 

    Drinking water source protection is one of several barriers, or ‘lines of defence,’ that help to protect drinking water in the province. Other barriers of protection include monitoring, distribution, and the Three Ts  — treatment, testing and training of water operators. 

    Drinking water source protection is possible in Ontario through the Clean Water Act, 2006. Local source protection committees include representatives of many interests. These committees have developed source protection plans at the local level and the plans have been approved by the Province of Ontario. The source protection plans include policies that reduce risk to our municipal drinking water sources in order to keep drinking water safe and clean for Ontarians. 

    To learn more about drinking water source protection in Ontario, visit the Conservation Ontario source water protection webpage and the Province of Ontario source protection webpage

  • 23 Nov 2022 4:30 PM | Smart About Salt (Administrator)

    LETTER: Let's get smarter about winter salt usage - Guelph News (guelphtoday.com)

    GuelphToday received the following letter from Karen Rathwell regarding excessive use of road salt in the winter.

    Our first snowfall came early and no doubt there were lots of smiles on faces when children woke up, but the smile on my face disappeared when I ventured downtown and saw firsthand the copious amount of salt on the doorsteps of RBC and BMO.

    I appreciate businesses are anxious about citizens falling on slippery payment at their threshold, and looking for easy money by suing someone else for their
    mishap, but drenching pavement in salt is not the answer.

    We live in a groundwater city and need to protect this pristine resource along with our beautiful creeks and rivers. There are so many environmental concerns right now, assault on our Greenbelt, heat waves, species loss, soil degradation, drought, and flooding, but we still need to take time to rethink our overuse of winter salt.

    This is something we can really do something about personally and locally. If you’re not sure if it's important, try drinking a glass of salt water! Perhaps we need to rethink the legislation for slip and fall litigation? Maybe we need to look more closely at what the responsibility of the individual should be?

    If the streets and walkways are icy, citizens need to plan for it or possibly postpone the outing. Wearing a hat, boots, and thick winter coat only makes sense, as does wearing grippers on the bottom of boots or bringing a walking pole, cane or walker. Most importantly, for the frail and elderly, find a companion to help keep you steady.

    This should not be the salt’s job! It’s impossible to salt everywhere anyone might step so planning to reduce your personal risk and protecting yourself if you should fall, need to play a bigger part.

    Let’s stop pouring salt over our children’s future.

    Karen Rathwell, Guelph


  • 11 Nov 2022 7:39 AM | Smart About Salt (Administrator)

    Winter pet hazards: Is road salt toxic to cats and dogs? - Vancouver Is Awesome

    When cold, wintry weather lands in Vancouver, a dusting of road salt often covers every paved surface.

    The salt is certainly a nuisance when it stains our new suede boots or gets tracked into the house but is it also dangerous to our four-legged friends?

    Dogs spend time stepping on the salt crystals when out for their daily walks and most don't have the benefit of shoes. 

    When dogs or cats come home with road salt on their paws and set about licking themselves, can that salt - also known as ice melt - cause them harm? 

    According to Dr. Ko Arman, a veterinarian and board director at the Society of BC Veterinarians: Yes, road salt is toxic to cats and dogs.

    "This is definitely a valid concern," Arman tells V.I.A in an email. "The good news is that it's rare for pets to ingest sufficient quantities of salt to cause systemic symptoms, but it is still important to maintain awareness about the issue."

    What symptoms should pet owners look for if their pet has ingested road salt?

    Arman says that signs of road salt ingestion will be mild and are localized to the paws and mouth. Paw pad irritation and some excess salivation (from licking paws) can be observed with mild exposures, or if there has been prolonged contact then painful ulcerations of the pads and mouth can occur.

    "If a pet has ingested a sufficient amount of an ice-melt product like road salt, the best course of action is to seek immediate veterinary care," says Arman. "Systemic symptoms may include vomiting, diarrhea, decreased appetite, excess thirst, lethargy, incoordination, tremors, seizures, and eventually coma and even death can take place."

    How to prevent your pet from ingesting road salt

    Cleansing and drying your pets' paws and belly fur after coming in from the outdoors is a good preventative measure to avoid paw and mouth irritation from salt and other chemicals they may have come into contact with on the roads as well as prevent any ingestion that may occur from self-grooming, according to Arman. 

    Additionally, little booties provide great paw protection if your dog will tolerate them.

    If not, Arman suggests that pet balms can also be used as protective coating for paw pads, "but owners need to be careful not to let their pets lick and ingest the products: be sure to clean them off once home from a walk outside," she says.

    She adds that pet owners should also make sure they use pet safe ice melts on their own walkways. And as a bonus tip warns that anti-freeze is also a winter pet hazard. "Pet owners should always buy pet safe anti-freeze for their vehicles - never use anti-freeze that contains ethylene glycol, a compound that is highly toxic to pets," she says.


  • 06 Nov 2022 9:43 AM | Smart About Salt (Administrator)

    B.C. researchers investigating impact of road salt on Pacific salmon | Globalnews.ca

    B.C. university researchers and scientists are looking into the impact that road salt may be having on local Pacific salmon.

    Researchers at the University of British Columbia have teamed up with Simon Fraser University, British Columbia Institute of Technology and Fisheries and Oceans Canada scientists to monitor salt levels in more than 20 streams around the Lower Mainland.

    “We know that Pacific salmon are in decline and we don’t know all the factors involved. Could too much salt in their streams be a cause?” questioned Chris Wood, a UBC professor.

    “Even though adult salmon live in salt water, they grow up in fresh. When they’re ready for salt water, their whole body has to change to adapt.”

    Wood continued, “There’s evidence that quite moderate salt levels at young ages have caused mortality and stunted growth.”

    The research team will be measuring salt levels and review the data every two months.

    “While things like climate change are known causes of salmon decline, salt could also be a factor,” said Patricia Schulte, a UBC professor.

    “We know road salt use in Canada is increasing at about 2.5 per cent per year. In Vancouver, the city has 3,000 tonnes of salt in its yards for winter maintenance on streets and sidewalks.”

    Schulte said as snow and ice melt, salt from roads can run into streams and may be affecting salmon.

    The five-year project will be funded by a Natural Sciences and Engineering Research Council grant and will specifically be looking at Chum and Coho salmon.

    Woods said community members can do their part to help local salmon by using only a little amount of salt when salting driveways and sidewalks.


  • 02 Nov 2022 3:02 PM | Smart About Salt (Administrator)

    Do road salts trigger eutrophication? Reviewing twenty years of water quality data in an urban lake. | Water Institute Research | University of Waterloo (uwaterloo.ca)

    Introduction

    Urbanization and associated land use change is a global phenomenon with often negative impacts on water quality and aquatic ecosystems. In particular, urban development of watersheds has been blamed for worsening eutrophication in receiving lakes and wetlands. Increased loadings of nutrients, especially of phosphorus (P), are generally assumed to be the main driver of eutrophication. A high availability of P stimulates dense algal growth that, in turn, may severely deplete dissolved oxygen (DO). In the worst case, the development of a so-called anoxic “dead zone” may result in die-offs of most organisms, such as fish and plants. 

    In cold temperate regions, urbanization is typically accompanied by growing winter applications of deicing road salts that inevitably lead to the salinization of local waterways, lakes, and groundwater aquifers. A direct link between salinization and eutrophication of lakes has not yet been demonstrated, however. This study investigates water quality changes in a Canadian lake over a two-decade period. The long-term multi-variate dataset is used to delineate and explain general trends in water quality using a variety of statistical methods. The main outcome is that rising salinity is responsible for the observed intensification of eutrophication-like symptoms, with very low DO levels in the deeper waters of the lake persisting over increasingly longer periods of time during the year. Yet, no evidence was found for an increase in the external loading of P from the watershed to the lake.  

    Methodology

    Lake Wilcox is a small kettle lake located in Richmond Hill, Ontario with a watershed area of 2.39 km2 (Figure 1). The originally forested watershed has undergone significant development since the early 1900s when the land was converted to agriculture, followed by urban development since the 1980s. As a result, land surface imperviousness is now over 60% (Figure 2a). In the 1980s, harmful cyanobacteria became an issue and an aeration system was installed but later deactivated. In the early 2000s, several stormwater management (SWM) systems were installed in the lake’s catchment to address deteriorating lake water quality.  

    A variety of datasets for the period of 1996 to 2018 were collected for the study, including water quality monitoring data, climate data, and surveys and satellite images of land use. The dissolved oxygen (DO) time series data served to calculate values for the Anoxic Factor (AF), a measure of the changes in the intensity of deoxygenation of the lake’s deeper waters. Interannual variations in the stability of the water column stratification were assessed by calculating the water density from measured temperature and salinity data and comparing the Brunt-Väisälä or buoyancy frequency depth profiles for the month of August, that is, when the thermal stratification of the lake is highest.   

    Multiple statistical methods were used to characterize and interpret water quality trends. Temporal changes were assessed with the Mann-Kendall test (Figure 3) and Principal Component Analysis helped to group correlated variables and identify the main drivers of water chemistry changes. A Multiple Linear Regression model was also developed to explore the relationships between the principal components and the following potential predictor variables: watershed imperviousness (as a measure of urbanization), lake chloride (Cl−) concentration (as a measure of deicing salt usage), external P loading to the lake, water column stratification (using the Brunt-Väisälä frequency), and climate parameters (including, measures of temperature conditions and the intensity of extreme precipitation events that can play an important role in pollutant wash-off in urban areas).

    Outcomes

    Although the external P inputs to Lake Wilcox have been generally declining, the lake is showing increasing eutrophic symptoms, most visible by the lengthening of the annual period during which the lower part of the lake (i.e., the hypolimnion) experiences low DO concentrations (i.e., hypoxic to anoxic conditions). The chloride concentration (and, hence, salinity) trend was explored as a potential explanatory variable because of the large increase in the lake water Cl concentrations (Figure 2b) at the same time hypoxia expanded (Figure 4).

    During the study period, the water chemistry of Lake Wilcox underwent significant changes, especially in terms of the concentrations of Cl, DO, total phosphorus (TP), and dissolved inorganic P (DIP). Changes in the ratios DIP:TP and DIN:DIP ratios (where DIN refers to dissolved inorganic nitrogen) were also observed. Chloride concentrations increased by a factor of 4, likely due to the increasing application of deicing agents as the watershed urbanized and connectivity to stormwater management infrastructure increased. While the results revealed decreasing trends for the external TP load to the lake and the TP concentrations in the lake, they showed little change in the DIP concentration, meaning that the lake DIP:TP ratios increased over time. This is important because DIP represents the most bioavailable fraction of TP. The longer annual periods of DO depletion of the hypolimnion and the corresponding increase of the AF likely intensified the P loading from the bottom sediments to the water column. It is well known that recycling of P from sediments, also known as internal P loading, is more efficient when the overlying water is anoxic.

    The results of the study show that the increasing salinity of Lake Wilcox due to the growing impervious land cover and accompanying increase in road salt application in the watershed has led to a strengthening of the lake's water column stratification. In turn, this has increasingly isolated the hypolimnion from the atmosphere and, hence, accelerated the depletion of DO and amplified the role of internal P loading, relative to the external loading. These changes in DO and P cycling are common symptoms of eutrophication. In Lake Wilcox, however, they appear to be more linked to the lake’s progressive salinization than to a higher external loading of P from the watershed.

    Conclusions

    By increasing water density and stabilizing the stratification of the water column, salinity emerges as a major driver of changes in water quality in Lake Wilcox. These changes include the expansion of hypoxia and anoxia in the hypolimnion and the increased contribution of internal loading to the lake’s P budget. This is the first known study that directly links salinization with lake eutrophication symptoms.

    Salinization, in addition to climate warming, may be an overlooked driver of downward trends of hypolimnion DO concentrations in lakes worldwide. In cold-temperate regions, urbanization is usually accompanied by increased application of road salts as indicated by rising Cl concentrations observed in urban lakes of North America and northern Europe. The study further suggests that efforts to reduce eutrophication of water bodies in urbanizing areas by controlling external nutrient loadings may be offset by the enhanced internal P loading as DO depletion intensifies.

    Historical use of road salt in urban watersheds also created chloride legacies in soils and groundwater. These legacies could continue to supply excess Cl to receiving lakes even if winter salt applications were reduced or altogether halted. Protecting the health of urban lakes therefore calls for integrated management strategies and requires further work to understand the contributions of climate change, urbanization and salinization, and their interactions, to changes in lake water quality.

    Radosavljevic, J., Slowinski, S., Shafii, M., Akbarzadeh, Z., Rezanezhad, F., Parsons, C. T., Withers, W., Van Cappellen, P. (2022). Salinization as a driver of eutrophication symptoms in an urban lake (Lake Wilcox, Ontario, Canada). Science of The Total Environment, 846, 157336. doi.org/10.1016/j.scitotenv.2022.157336

  • 18 Oct 2022 6:20 AM | Smart About Salt (Administrator)

    Snow can spread and worsen the effects of pollutants in the environment (yahoo.com)

    By October, autumn’s arrival brings with it the promise of winter — and snow.

    And with it comes a quieter world, thanks to snow’s ability to absorb noise. This is because the spaces between snow crystals limit sound waves from bouncing around, creating a soundproofing effect.

    Snow also adsorbs other matters it comes into contact with. Adsorption is when substances adhere on surfaces of materials (usually liquids or solids). The adsorptive properties of snow are the reason for some of its unique features, including its loosely bound crystalline porous structure with finely divided individually shaped flakes with large surface areas.

    Its dynamic changes between ice and liquid states facilitate the absorption and release of pollutants, depending on prevailing surface and atmospheric conditions.

    As an analytical material chemist with a research background in adsorption, I am interested in understanding how various materials — like snow — adsorb certain substances, like persistent organic and vehicular exhaust pollutants.

    Snow and pollution

    In the winter, snow becomes a superabsorbent for a wide range of pollutants, including vehicular exhaust particulate matters, persistent organic pollutants (POPs), trace metals and chlorides from road salts.

    As snow subsequently moves around or melts, most of these pollutants find their way into underground pipes and aquifers.

    POPs are some of the most dangerous pollutants because they remain active, lasting for several years within their environments before finally degrading into other chemical forms. POPs, such as polychlorinated biphenyls, organochlorine pesticides and perflouroalkylated substances, have severe environmental impacts.

    They are classified under the Toxic Substances Management Policy as Track 1 substances in Canada, and are usually targeted for environmental removal.

    Just like POPs, very little is also known about how chemical pollutants from the exhausts of gasoline-powered vehicles interact with snow.

    In Canadian cities, snow is moved around through various means, including snow melts, during plowing, on tires of vehicles or even soles of pedestrian shoes. During transportation, changes in ground surface pressure and ambient temperature can also affect the adsorption rates of chemical pollutants on snow.

    Research conducted in Québec has shown that snow adsorbs significant amounts of organic pollutants and aerosol particles from exhaust pipes within 30 minutes of exposure. These researchers also observed the adsorption of aerosol particles with larger particulate sizes (approximately 50-400 nm) relative to smaller nanoparticles (less than 50 nm).

    Health effects

    POPs are introduced into the environment through agricultural and industrial practices. Most of them may have come from other anthropogenic sources but are unintentionally released from simple events like burning household waste.

    Burning industrial, municipal or medical wastes can also release dioxins and furans. Toxaphene and hexachlorobenzene could originate from uncontrolled insecticide and pesticide waste disposal. Upon exposure during winter, these chemical pollutants find their way into the snow, then into surface water and up the food chain. They can adversely affect aquatic life when subsequently introduced into the aquatic ecosystems.

    POPs and exhaust particulate matters can affect human health. They can cause allergies, hypersensitivity, birth defects and neurological disorders. Most POPs are carcinogens. Some of them may alter the nervous systems, leading to chronic health conditions. POPs can also affect reproductive health and disrupt the immune system. Some particulate matters cause lung inflammation and increase the risk of blood clotting.

    These severe impacts on human health and environment sustainability are why POPs are currently regulated under the Stockholm Convention, as adopted by Canada in 2001.

    Between applicable industries and environmental monitoring agencies, federal and provincial governments and us, everyone has a part to play. All hands must be on deck in providing sustainable regulations for these pollutants. And as we approach winter, measures should be developed to reduce the amount of pollutants that can accumulate and persist in snow.

    This article is republished from The Conversation, an independent nonprofit news site dedicated to sharing ideas from academic experts. It was written by: Ubong EduokWestern University. The Conversation has a variety of fascinating free newsletters.


  • 19 Sep 2022 6:41 AM | Smart About Salt (Administrator)

    Kincardine Awards Winter Road Salt Contract | Bayshore Broadcasting News Centre

    Kincardine Council has awarded Compass Minerals Canada a two-year contract for winter road salt.

    The municipality partnered with the County of Bruce and other municipalities to help ensure the best value for money.

    Council had to give final approval because inflation caused the price of road salt to go up.

    The contract is worth $100,000.

  • 07 Sep 2022 2:01 PM | Smart About Salt (Administrator)

    Landscape Trades

    Maintaining commercial properties in winter has become an incredibly challenging exercise in recent years. While the main concern of contractors is clearing parking lots and walkways of snow and ice to ensure the safety of patrons, they are also working to ensure, to the extent possible, that their treatment of the site reduces their exposure to slip and fall claims. Insurance premiums have skyrocketed over the past few years, and there are many stories of a single claim increasing premiums enough to put a small company out of business.

    Available training, such as that offered through the Smart About Salt Council, teaches contractors about best practices, including how much salt should be applied and in which conditions. However, it can be hard to put this knowledge into practice when you’re faced with real world conditions and pressure from property owners and the public.

    Given these concerns, contractors have good reason to be hesitant about making changes to their practices. To explore these issues, the Lake Simcoe Region Conservation Authority (the “Conservation Authority”) conducted a study at a large (14.2 hectare) commercial site to see if the best practices taught in training courses can be effective for both maintaining safety and limiting the amount of salt that’s applied. Two different contractors have been responsible for winter maintenance over the course of the study; the first was there from the start of the study in fall 2014 to spring 2018, and the second has been there since fall 2018. Both contractors focused on maintaining site safety while using different management practices, with the second contractor (2018 to present) utilizing recommended best practices and reducing salt use.

    It’s also important to note that neither contractor has had a slip and fall claim or complaint against them throughout the course of the study. The following sections will show that the use of best practices can provide numerous benefits to contractors, not the least of which is maintaining site safety. The failure to implement these practices, however, can potentially result in additional hazards, such as blowing snow, the freezing of melt water in drive areas, loose salt piles which can reduce traction, and reduced visibility; these can all increase a contractor’s exposure to liability.

    Of course, there are also environmental costs associated with using more salt to treat a site: high levels of chloride from winter salt have impacts on water resources and aquatic life. Careful thought about how to properly treat a site and close monitoring of on-site weather conditions can help contractors enhance the effectiveness of their practices and reduce or eliminate these issues.

    Salt use on the study site

    As noted above, the two contractors took different approaches to maintaining the site. These differences bear out in the data collected by the Conservation Authority over the years of the study. Figure 1 displays the average amount of salt applied in each event over each season (these numbers were calculated by the Conservation Authority through water quality measurements taken at the site’s single drainage outlet), with the first contractor shown in yellow, and the second shown in black. The first contractor applied an average of 12 tonnes (t) per event across all seasons, with an application rate of 81 g/m2, while the second applied an average of 10 t per event at a slightly lower rate of 70 g/m2. The first contractor noted that they used the same application rate regardless of the site conditions and expected weather, while the second tailored their application rates to the actual conditions of the site. This included noting the expected duration of the event and the forecasted amount and type of precipitation, which enabled them to apply less salt in most circumstances.

    The most notable difference in how the two contractors treated the site can be seen in the number of events they responded to in each season (Figure 2). The first contractor responded to more events in every season than the second contractor. The first contractor had an average of 68 event responses each season, while the second had significantly fewer, with an average of 42. As shown in Figure 2, seasonal precipitation was not notably lower for the period that the second contractor was managing the site and does not appear to be the reason they were able to respond to fewer events. They were able to undertake fewer applications at a time when municipalities in the area were increasing the number of applications each season. They attribute being able to respond to fewer events to keeping a close eye on the weather and conditions on the ground at the site, as widely available weather forecasts may not be accurate at a smaller scale.
     

    Factors affecting salt application

    There were some extenuating factors that affected the amount of salt applied and number of applications; the first, and most obvious of these is the weather. For example, 2015/2016 was a mild winter with fewer precipitation events and less precipitation overall. Because of this, the first contractor had slightly fewer applications, and it appears that the drivers elected to apply less salt given the conditions didn’t warrant heavy applications. The other major factor was the salt shortage of the 2017/2018 season. This was a North America-wide shortage that affected road authorities and contractors alike. Due to the shortage, the first contractor couldn’t purchase as much salt as they normally would for the season, forcing them to reduce their application rates, and eventually switch to the use of sand near the end of the season. These factors reduced the amount of salt used by the first contractor. If it weren’t for the mild winter and the salt shortage, the difference between the two contractors would likely have been even more pronounced than what was observed.

    Lessons learned

    This case study highlights the effectiveness of best practices and training programs in ensuring site safety and reducing the amount of salt applied on the site to achieve safe conditions. The potential benefits to the property owner and contractors who follow best practices include cost savings and records demonstrating that reasonable steps were taken to protect patrons from winter hazards. While there were no slip and fall claims for either contractor for the duration of the study, the second contractor was able to manage the parking lot using approximately 45 per cent of the salt used by the first contractor. The difference between the two is due mainly to fewer applications, as well as lower application rates.

    There can be considerable financial benefits for contractors who change their practices and apply less salt. In addition to fuel savings from sending plows and salters out less often, less wear and tear on vehicles, and less employee time spent treating the site, further benefits can be seen through cost savings on materials. Table 1 shows that, given the average number of applications and volume applied, the result is an annual savings in materials costs of over $37,000.

    As noted by the second contractor, training, an understanding of how to properly use salt in different conditions, and the implementation of best practices is vital when working to improve your methods. This highlights the importance of training for contractors and their staff. Understanding how the materials and the best practices work will help contractors ensure they are applying the right material, in the right amount, at the right time. Training courses are available for contractors in Ontario (such as Smart About Salt), and certification can also be obtained through these programs.

    Another important factor in ensuring salt is only applied when necessary is a thorough understanding of the current and forecasted weather conditions, as well as the on-site conditions. This can be achieved in part through subscriptions to detailed weather forecasts. The second contractor noted that they have a staff person check the site on days with weather or expected weather to determine the conditions and what actions may need to be taken; this person also decides whether further treatment is required after the initial treatment. While this may not be practical for all contractors, it is helpful in reducing person-hours and material costs incurred through treating a site unnecessarily. On-site camera technology has evolved to a point that it can be used to perform the same function. In addition, technologies such as pavement temperature and friction sensors mounted to plows, and automated salt delivery systems that control application rates by vehicle ground speed are also important tools that can ensure the right amount of material is being applied when it’s needed.
     

    Conclusions

    This study highlights the importance of training, understanding the site conditions, and monitoring the local weather conditions. Implementing these practices results in savings in materials costs, including salt and fuel, as well as human resource and equipment costs. It can also help to prevent the contamination of our water resources. These benefits can be realized with relatively little effort on the part of the contractor, and without sacrificing the safety of parking lot users or increasing exposure to liability. For all these reasons, training and the use of best practices should be encouraged among all snow and ice management contractors.
     

    The Sustainable Technologies Evaluation Program (STEP) is a conservation authority-led initiative that fosters broader implementation of technologies that protect water resources and reduce our carbon footprint. The STEP Salt Working Group includes members from Lake Simcoe Region Conservation Authority; Toronto and Region Conservation Authority; Credit Valley Conservation; Ministry of Environment, Conservation and Parks; Region of Waterloo; Region of Peel; Toronto Metropolitan University; and the Smart About Salt Council.

    This case study has received funding and support from the Ontario Ministry of Environment, Conservation and Parks. Such support does not indicate endorsement by the Government of Ontario of the contents of this article.



© Smart About Salt Council.  Smart About Salt is a trademark and the Smart About Salt logo is a registered trademark of the Smart About Salt Council.


Powered by Wild Apricot Membership Software